Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
medRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38343850

RESUMEN

Most genetic association studies focus on binary variants. To identify the effects of multi-allelic variation of tandem repeats (TRs) on human traits, we performed direct TR genotyping and phenome-wide association studies in 168,554 individuals from the UK Biobank, identifying 47 TRs showing causal associations with 73 traits. We replicated 23 of 31 (74%) of these causal associations in the All of Us cohort. While this set included several known repeat expansion disorders, novel associations we found were attributable to common polymorphic variation in TR length rather than rare expansions and include e.g. a coding polyhistidine motif in HRCT1 influencing risk of hypertension and a poly(CGC) in the 5'UTR of GNB2 influencing heart rate. Causal TRs were strongly enriched for associations with local gene expression and DNA methylation. Our study highlights the contribution of multi-allelic TRs to the "missing heritability" of the human genome.

2.
medRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461547

RESUMEN

Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions, and technological limitations leading to under-ascertainment. Here, leveraging whole genome sequencing data from 82,176 individuals from different populations we found an overall carrier frequency of REDs of 1 in 340 individuals. Modelling disease prevalence using genetic data, age at onset and survival, we show that REDs are up to 3-fold more prevalent than currently reported figures. While some REDs are population-specific, e.g. Huntington's disease type 2, most REDs are represented in all broad genetic ancestries, including Africans and Asians, challenging the notion that some REDs are found only in European populations. These results have worldwide implications for local and global health communities in the diagnosis and management of REDs both at local and global levels.

3.
medRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37205357

RESUMEN

GC-rich tandem repeat expansions (TREs) are often associated with DNA methylation, gene silencing and folate-sensitive fragile sites and underlie several congenital and late-onset disorders. Through a combination of DNA methylation profiling and tandem repeat genotyping, we identified 24 methylated TREs and investigated their effects on human traits using PheWAS in 168,641 individuals from the UK Biobank, identifying 156 significant TRE:trait associations involving 17 different TREs. Of these, a GCC expansion in the promoter of AFF3 was linked with a 2.4-fold reduced probability of completing secondary education, an effect size comparable to several recurrent pathogenic microdeletions. In a cohort of 6,371 probands with neurodevelopmental problems of suspected genetic etiology, we observed a significant enrichment of AFF3 expansions compared to controls. With a population prevalence that is at least 5-fold higher than the TRE that causes fragile X syndrome, AFF3 expansions represent a significant cause of neurodevelopmental delay.

4.
Genome Res ; 33(2): 184-196, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36577521

RESUMEN

Short tandem repeats (STRs) contribute significantly to genetic diversity in humans, including disease-causing variation. Although the effect of STR variation on gene expression has been extensively assessed, their impact on epigenetics has been poorly studied and limited to specific genomic regions. Here, we investigated the hypothesis that some STRs act as independent regulators of local DNA methylation in the human genome and modify risk of common human traits. To address these questions, we first analyzed two independent data sets comprising PCR-free whole-genome sequencing (WGS) and genome-wide DNA methylation levels derived from whole-blood samples in 245 (discovery cohort) and 484 individuals (replication cohort). Using genotypes for 131,635 polymorphic STRs derived from WGS using HipSTR, we identified 11,870 STRs that associated with DNA methylation levels (mSTRs) of 11,774 CpGs (Bonferroni P < 0.001) in our discovery cohort, with 90% successfully replicating in our second cohort. Subsequently, through fine-mapping using CAVIAR we defined 585 of these mSTRs as the likely causal variants underlying the observed associations (fm-mSTRs) and linked a fraction of these to previously reported genome-wide association study signals, providing insights into the mechanisms underlying complex human traits. Furthermore, by integrating gene expression data, we observed that 12.5% of the tested fm-mSTRs also modulate expression levels of nearby genes, reinforcing their regulatory potential. Overall, our findings expand the catalog of functional sequence variants that affect genome regulation, highlighting the importance of incorporating STRs in future genetic association analysis and epigenetics data for the interpretation of trait-associated variants.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo , Humanos , Repeticiones de Microsatélite , Genoma Humano , Genotipo
5.
Am J Hum Genet ; 109(6): 1065-1076, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35609568

RESUMEN

The human genome contains tens of thousands of large tandem repeats and hundreds of genes that show common and highly variable copy-number changes. Due to their large size and repetitive nature, these variable number tandem repeats (VNTRs) and multicopy genes are generally recalcitrant to standard genotyping approaches and, as a result, this class of variation is poorly characterized. However, several recent studies have demonstrated that copy-number variation of VNTRs can modify local gene expression, epigenetics, and human traits, indicating that many have a functional role. Here, using read depth from whole-genome sequencing to profile copy number, we report results of a phenome-wide association study (PheWAS) of VNTRs and multicopy genes in a discovery cohort of ∼35,000 samples, identifying 32 traits associated with copy number of 38 VNTRs and multicopy genes at 1% FDR. We replicated many of these signals in an independent cohort and observed that VNTRs showing trait associations were significantly enriched for expression QTLs with nearby genes, providing strong support for our results. Fine-mapping studies indicated that in the majority (∼90%) of cases, the VNTRs and multicopy genes we identified represent the causal variants underlying the observed associations. Furthermore, several lie in regions where prior SNV-based GWASs have failed to identify any significant associations with these traits. Our study indicates that copy number of VNTRs and multicopy genes contributes to diverse human traits and suggests that complex structural variants potentially explain some of the so-called "missing heritability" of SNV-based GWASs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Repeticiones de Minisatélite , Variaciones en el Número de Copia de ADN/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Repeticiones de Minisatélite/genética , Fenotipo
6.
Am J Hum Genet ; 108(5): 809-824, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33794196

RESUMEN

Variable number tandem repeats (VNTRs) are composed of large tandemly repeated motifs, many of which are highly polymorphic in copy number. However, because of their large size and repetitive nature, they remain poorly studied. To investigate the regulatory potential of VNTRs, we used read-depth data from Illumina whole-genome sequencing to perform association analysis between copy number of ∼70,000 VNTRs (motif size ≥ 10 bp) with both gene expression (404 samples in 48 tissues) and DNA methylation (235 samples in peripheral blood), identifying thousands of VNTRs that are associated with local gene expression (eVNTRs) and DNA methylation levels (mVNTRs). Using an independent cohort, we validated 73%-80% of signals observed in the two discovery cohorts, while allelic analysis of VNTR length and CpG methylation in 30 Oxford Nanopore genomes gave additional support for mVNTR loci, thus providing robust evidence to support that these represent genuine associations. Further, conditional analysis indicated that many eVNTRs and mVNTRs act as QTLs independently of other local variation. We also observed strong enrichments of eVNTRs and mVNTRs for regulatory features such as enhancers and promoters. Using the Human Genome Diversity Panel, we define sets of VNTRs that show highly divergent copy numbers among human populations and show that these are enriched for regulatory effects and preferentially associate with genes that have been linked with human phenotypes through GWASs. Our study provides strong evidence supporting functional variation at thousands of VNTRs and defines candidate sets of VNTRs, copy number variation of which potentially plays a role in numerous human phenotypes.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Metilación de ADN , Regulación de la Expresión Génica , Repeticiones de Minisatélite/genética , Sitios de Carácter Cuantitativo/genética , Adolescente , Adulto , Algoritmos , Niño , Preescolar , Cromosomas Humanos X/genética , Estudios de Cohortes , Islas de CpG/genética , Elementos de Facilitación Genéticos/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Fenotipo , Regiones Promotoras Genéticas/genética , Adulto Joven
7.
PLoS Genet ; 16(11): e1009189, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33216750

RESUMEN

Although DNA methylation is the best characterized epigenetic mark, the mechanism by which it is targeted to specific regions in the genome remains unclear. Recent studies have revealed that local DNA methylation profiles might be dictated by cis-regulatory DNA sequences that mainly operate via DNA-binding factors. Consistent with this finding, we have recently shown that disruption of CTCF-binding sites by rare single nucleotide variants (SNVs) can underlie cis-linked DNA methylation changes in patients with congenital anomalies. These data raise the hypothesis that rare genetic variation at transcription factor binding sites (TFBSs) might contribute to local DNA methylation patterning. In this work, by combining blood genome-wide DNA methylation profiles, whole genome sequencing-derived SNVs from 247 unrelated individuals along with 133 predicted TFBS motifs derived from ENCODE ChIP-Seq data, we observed an association between the disruption of binding sites for multiple TFs by rare SNVs and extreme DNA methylation values at both local and, to a lesser extent, distant CpGs. While the majority of these changes affected only single CpGs, 24% were associated with multiple outlier CpGs within ±1kb of the disrupted TFBS. Interestingly, disruption of functionally constrained sites within TF motifs lead to larger DNA methylation changes at nearby CpG sites. Altogether, these findings suggest that rare SNVs at TFBS negatively influence TF-DNA binding, which can lead to an altered local DNA methylation profile. Furthermore, subsequent integration of DNA methylation and RNA-Seq profiles from cardiac tissues enabled us to observe an association between rare SNV-directed DNA methylation and outlier expression of nearby genes. In conclusion, our findings not only provide insights into the effect of rare genetic variation at TFBS on shaping local DNA methylation and its consequences on genome regulation, but also provide a rationale to incorporate DNA methylation data to interpret the functional role of rare variants.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Epigénesis Genética , Genoma Humano/genética , Factores de Transcripción/metabolismo , Adolescente , Adulto , Sitios de Unión/genética , Niño , Preescolar , Secuenciación de Inmunoprecipitación de Cromatina , Estudios de Cohortes , Femenino , Cardiopatías Congénitas/sangre , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Adulto Joven
8.
Am J Hum Genet ; 107(4): 654-669, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937144

RESUMEN

There is growing recognition that epivariations, most often recognized as promoter hypermethylation events that lead to gene silencing, are associated with a number of human diseases. However, little information exists on the prevalence and distribution of rare epigenetic variation in the human population. In order to address this, we performed a survey of methylation profiles from 23,116 individuals using the Illumina 450k array. Using a robust outlier approach, we identified 4,452 unique autosomal epivariations, including potentially inactivating promoter methylation events at 384 genes linked to human disease. For example, we observed promoter hypermethylation of BRCA1 and LDLR at population frequencies of ∼1 in 3,000 and ∼1 in 6,000, respectively, suggesting that epivariations may underlie a fraction of human disease which would be missed by purely sequence-based approaches. Using expression data, we confirmed that many epivariations are associated with outlier gene expression. Analysis of variation data and monozygous twin pairs suggests that approximately two-thirds of epivariations segregate in the population secondary to underlying sequence mutations, while one-third are likely sporadic events that occur post-zygotically. We identified 25 loci where rare hypermethylation coincided with the presence of an unstable CGG tandem repeat, validated the presence of CGG expansions at several loci, and identified the putative molecular defect underlying most of the known folate-sensitive fragile sites in the genome. Our study provides a catalog of rare epigenetic changes in the human genome, gives insight into the underlying origins and consequences of epivariations, and identifies many hypermethylated CGG repeat expansions.


Asunto(s)
Proteína BRCA1/genética , Epigénesis Genética , Enfermedades Genéticas Congénitas/genética , Genoma Humano , Receptores de LDL/genética , Expansión de Repetición de Trinucleótido , Proteína BRCA1/metabolismo , Metilación de ADN , Femenino , Ácido Fólico/metabolismo , Silenciador del Gen , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/patología , Sitios Genéticos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Regiones Promotoras Genéticas , Receptores de LDL/metabolismo , Gemelos Monocigóticos
9.
Nat Commun ; 9(1): 2064, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802345

RESUMEN

Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained. We hypothesize that some cases of ND-CA are caused by aberrant DNA methylation leading to dysregulated genome function. Comparing DNA methylation profiles from 489 individuals with ND-CAs against 1534 controls, we identify epivariations as a frequent occurrence in the human genome. De novo epivariations are significantly enriched in cases, while RNAseq analysis shows that epivariations often have an impact on gene expression comparable to loss-of-function mutations. Additionally, we detect and replicate an enrichment of rare sequence mutations overlapping CTCF binding sites close to epivariations, providing a rationale for interpreting non-coding variation. We propose that epivariations contribute to the pathogenesis of some patients with unexplained ND-CAs, and as such likely have diagnostic relevance.


Asunto(s)
Anomalías Congénitas/genética , Epigénesis Genética , Genoma Humano/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Metilación de ADN/genética , Conjuntos de Datos como Asunto , Epigenómica/métodos , Humanos , Lactante , Recién Nacido , Mutación con Pérdida de Función/genética , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Adulto Joven
10.
Clin Epigenetics ; 8: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819647

RESUMEN

BACKGROUND: Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. METHODS: The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). RESULTS: The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. CONCLUSIONS: This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.


Asunto(s)
Metilación de ADN , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Impresión Genómica/genética , Seudohipoparatiroidismo/genética , Estudios de Casos y Controles , Cromograninas , Estudio de Asociación del Genoma Completo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
PLoS Genet ; 11(11): e1005644, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26544189

RESUMEN

Familial recurrent hydatidiform mole (RHM) is a maternal-effect autosomal recessive disorder usually associated with mutations of the NLRP7 gene. It is characterized by HM with excessive trophoblastic proliferation, which mimics the appearance of androgenetic molar conceptuses despite their diploid biparental constitution. It has been proposed that the phenotypes of both types of mole are associated with aberrant genomic imprinting. However no systematic analyses for imprinting defects have been reported. Here, we present the genome-wide methylation profiles of both spontaneous androgenetic and biparental NLRP7 defective molar tissues. We observe total paternalization of all ubiquitous and placenta-specific differentially methylated regions (DMRs) in four androgenetic moles; namely gain of methylation at paternally methylated loci and absence of methylation at maternally methylated regions. The methylation defects observed in five RHM biopsies from NLRP7 defective patients are restricted to lack-of-methylation at maternal DMRs. Surprisingly RHMs from two sisters with the same missense mutations, as well as consecutive RHMs from one affected female show subtle allelic methylation differences, suggesting inter-RHM variation. These epigenotypes are consistent with NLRP7 being a maternal-effect gene and involved in imprint acquisition in the oocyte. In addition, bioinformatic screening of the resulting methylation datasets identified over sixty loci with methylation profiles consistent with imprinting in the placenta, of which we confirm 22 as novel maternally methylated loci. These observations strongly suggest that the molar phenotypes are due to defective placenta-specific imprinting and over-expression of paternally expressed transcripts, highlighting that maternal-effect mutations of NLRP7 are associated with the most severe form of multi-locus imprinting defects in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Metilación de ADN , Impresión Genómica , Mola Hidatiforme/genética , Mutación , Placenta/metabolismo , Alelos , Femenino , Humanos , Embarazo
12.
Nucleic Acids Res ; 39(11): 4577-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21300645

RESUMEN

Imprinted retrotransposed genes share a common genomic organization including a promoter-associated differentially methylated region (DMR) and a position within the intron of a multi-exonic 'host' gene. In the mouse, at least one transcript of the host gene is also subject to genomic imprinting. Human retrogene orthologues are imprinted and we reveal that human host genes are not imprinted. This coincides with genomic rearrangements that occurred during primate evolution, which increase the separation between the retrogene DMRs and the host genes. To address the mechanisms governing imprinted retrogene expression, histone modifications were assayed at the DMRs. For the mouse retrogenes, the active mark H3K4me2 was associated with the unmethylated paternal allele, while the methylated maternal allele was enriched in repressive marks including H3K9me3 and H4K20me3. Two human retrogenes showed monoallelic enrichment of active, but not of repressive marks suggesting a partial uncoupling of the relationship between DNA methylation and repressive histone methylation, possibly due to the smaller size and lower CpG density of these DMRs. Finally, we show that the genes immediately flanking the host genes in mouse and human are biallelically expressed in a range of tissues, suggesting that these loci are distinct from large imprinted clusters.


Asunto(s)
Impresión Genómica , Histonas/metabolismo , Retroelementos , Alelos , Animales , Cromatina/metabolismo , Metilación de ADN , Humanos , Ratones , Regiones Promotoras Genéticas
13.
Ann Rheum Dis ; 69(6): 1239-42, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19556211

RESUMEN

OBJECTIVE: Increased expression of insulin-like growth factor 2 (IGF2) by fibroblast-like synoviocytes (FLS) was associated with low inflammatory synovium of patients with rheumatoid arthritis (RA). The aim of this study was to analyse whether the differential expression of IGF2, whose expression is normally restricted to one allele, is due to activation of the normally suppressed allele. METHODS: IGF2 gene expression of RA FLS was quantified by quantitative real-time PCR. FLS heterozygous for a 3'-untranslated region IGF2 polymorphism were selected to measure the relative contribution of the allelic transcripts by allele-specific transcript quantification assay. Proliferation was determined by [(3)H]thymidine incorporation. RESULTS: IGF2 was shown to contribute to RA FLS proliferation. FLS could be classified in IGF2 high and IGF2 low-expressing cell lines. Allelic IGF2 transcript quantification analysis revealed that in part of the RA FLS the normally suppressed allele was activated, resulting in biallelic expression of the IGF2 gene. Biallelic expression was associated with increased levels of IGF2 mRNA production. CONCLUSION: The findings indicate that the imprinting status of IGF2 might underlie the increased expression of IGF2, which may contribute to autonomous growth of RA FLS of low inflammatory synovial tissues.


Asunto(s)
Artritis Reumatoide/metabolismo , Factor II del Crecimiento Similar a la Insulina/biosíntesis , Membrana Sinovial/metabolismo , Artritis Reumatoide/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Regulación de la Expresión Génica , Impresión Genómica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/farmacología , ARN Mensajero/genética , Membrana Sinovial/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...